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and optical properties of nanocrystalline silicon thin films prepared by pulsed laser 
deposition method at a laser energy between 400 and 800 °C.  

 

            2.   Experimental Work 
 

Crystalline Silicon substrates, n-type Si (phosphorus doped) with resistivity of (1.5-4 
Ω-m) and (111) orientation. The silicon wafer has (111) orientation with dimensions of (1x1) 
cm² to select various interaction areas with an Nd:YAG pulsed laser were used for laser 
ablation (LA) technique. Q-Switched Nd:YAG laser system (Huafei Co.) of a 1.06 µm 
wavelength, (1000 mJ)  maximum power output and (9 ns) pulse duration has  been used. 
The substrate used for deposition of silicon nanoparticales is borosilicate (BK-7) glass slides. 

The deposition process was carried out under 5×10-5 torr at room temperature. The 
pulsed laser was focused on a rotating target to minimize a pit formation using lenses 
mounted inside the vacuum chamber. The target mount was fixed at optimum angle of 45° 
with the incident laser pulse to reduce the interaction between the laser beam and 
evaporating materials and to ensure that the maximum of the ejected materials reach's  the 
substrate. Silicon nanoparticales films were deposited on glass substrate under various 
preparation parameters such as number of pulses and laser energy.  

The phases present in the as-deposited films were analyzed by x-ray diffraction in 
conventional θ–2θ configuration.  

The optical transmission and absorption of silicon nanostructured film deposited on 
glass substrate was examined by CECILE CE-7200 spectrophotometer within the wavelength 
range (150-1100) nm. The glass substrate was used as a reference sample in the direction of 
the reference beam to prevent the effect of the reference sample during the measuring 
process. The estimated data from the transmission spectrum was used to determine the 
optical band gap graphically of samples prepared under different preparation conditions using 
the following equation [13, 14]: 
 

α 
d

1
  ln 

T

1
                                                                     (1) 

 
where d and T are the thickness and transmission to the nanostructure  films.  
  

        3. Result and Discussion 
 

The silicon films thickness deposited by pulse laser ablation (PLD) has been 
measured optically. Fig. 1 illustrates the effect of the incident laser energies and the number 
of laser pulses on the film thickness prepared by PLD. A deposited film thickness as a 
function of laser energy (300-600 mJ) with constant number of pulses (10) pulses. 
Increasing laser energy leads to increase in the amount of absorbed energy from the silicon 
atoms and subsequently increase the number of ejected particles from the target have higher 
kinetic energy leading to increasing the number of particles reaching the substrate causing 
increase in the film thickness. This could be attributed to decrease in the laser power density 
due to removal of the ejected target material and change in the target surface. Schottky 
contacts were made on (100) polished surface of non-intentionally doped n and p-type GaAs 
( 316

AD cm102N,N  ). The ohmicity of back contacts was checked before each 
experiment. 
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Table 1:  Shows the finding point of intercepts results from software. 
 

Functions Point of intercept Decimal places of 
accuracy 

Number of 
iterations 

f(x) and  f ' (x) (2.1452,0.5996) 
(3.0745,1.2712) 

8 4 

f (x) and  f ''(x) (2.668,0.895) 
 

4 2 

f '(x) and  f ''(x) (2.564,0.585) 4 2 

  
Newton-Raphson method: 
 
Usually this numerical method used for solving nonlinear algebraic equations. Here, 

we adapted the basic idea of this method:        
oo  When the real root x1 is known, then one may easily compute the functional f(x1). 

Drawing a line tangent to the curve at point x1 , then the tangent line intersect the x-axis at a 
point , say x2 , which play a significant important in evaluating Eg values. 

oo  Evaluating  intersection point of tangent line with x-axis: 
 

)(

)(
'1

K

K
KK

xf

xf
xx 

                                                       (2)
 

Where, 
xk+1 = approximate root after k+1 iterations. 
xk  = approximate root after k iterations. 
f(xk) = functional value at xk. 
f ′(xk) = first derivative value of the functional at xk. 
k  = 1,2,3,…… 

As a result, intersection points gives a range of  Eg  values due to the cases     
a. f(x) and f '(x) 

          [3.5375, 2.8653, 1.6453, 1.1454, ….] 
b. f(x) and f ''(x) 

          [3.5375, 1.754, 1.6658 , 1.0258, ….] 
c. f '(x) and f ''(x) 

          [3.965, 3.0439, 1.5632, …….]                       
 
The average value of   Eg = 1.6248 eV, this gives an indication that this method still 

gives an approximated Eg value. 
Using the two methods to find the optical band gap energy. Fig. 5 shows the effect of 

different laser energies on the optical band gap of the silicon nanostructure films, It was 
found that the optical band gap energy is highly affected by the incident laser energy. When 
low laser energy (300) mJ is employed, low number of large size silicon nanoparticales were 
ablated from the target and the estimated band gap energy was (1.6 eV, 1.53 eV) as shown 
in Fig. 5a. Increasing the incident laser energy to (400) mJ leads to increase the laser power 
density and this leads to increase the number of small size nanoparticles ejected from target 
and reaching the substrate surface, therefore the optical band gap increases. This band gap 
reaches (1.7 eV, 1.625 eV) as shown in Fig. 5b. By increasing the incident laser energy Fig. 
5c & d, this means we will gain a high number of small size silicon nanoparticles rather than 
large size nanoparticles and this will leads to increases the value of optical band gap energy 
and reaches (1.9 eV, 1.78 eV) at higher energy. The observed shift in the band-edge can be 
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